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We derive the nondiffractingX waves, first discussed within acoustics by Lu and Greenleaf@IEEE Trans.
Ultrason. Ferroelec. Freq. Contr.39, 19 ~1992!#, using the general mathematical formalism based on an angular
spectrum of plane waves. This serves to provide a unified treatment of not only the fundamental zeroth-order
X waves of Lu and Greenleaf, but also of the lesser-known higher-order derivativeX waves, first discussed
here in terms of a single, universal, angular spectrum. The characteristic crossed~letter-X-like! shape and the
special properties of theX waves, as well as of their angular-spectrum representation, are discussed and
illustrated in detail. Asymptotically, for increasing order, the appearance of theX waves is found to transform
into a triangular wedgelike waveform.@S1063-651X~96!04910-0#

PACS number~s!: 43.20.1g, 62.30.1d, 03.40.Kf, 02.90.1p,

I. INTRODUCTION

The angular spectrum of plane waves~ASPW! is an in-
tuitive and physically appealing method to study wave
propagation and diffraction in problems of electrodynamics,
optics, and acoustics@1#. Two types of plane-wave expan-
sions are commonly in use: on one hand the Whittaker-type
~1902! representations of source-free fields in terms of ho-
mogeneous plane waves propagating in all directions and, on
the other hand, the general angular-spectrum representations
effectively based on the Weyl expansion~1919! of a spheri-
cal wave@2#. The latter decomposition contains not only ho-
mogeneous but also inhomogeneous~evanescent! plane
waves, and so it is applicable in aperture and near-field
analyses as well.

Several classes of localized~in space and time! and non-
diffracting three-dimensional~3D! wave solutions to the
wave equations in free space or in uniform and isotropic
media have been discovered@3–6#. The localized wave fields
correspond to linear, nondispersive, wave-packet solutions,
while nondiffractive waves are monochromatic beams that
do not spread on propagation. The ideal properties of these
fields require infinite domains and energies, but approximate
solutions showing extended ranges of localization have been
produced in finite apertures@7#. Coherent nondiffracting
fields and their practical realizations have been studied ex-
tensively in optics@8–11# and in acoustics@6,12#. Besides
high-definition metrology, these fields have potential appli-
cations, e.g., in nonlinear optics@13#, particle-beam confine-
ment @14#, and inverse free-electron laser accelerators@15#.

A particular subset of exact nondiffracting solutions to the
free-space scalar wave equation, called theX waves, was

recently put forward theoretically@6,16# and demonstrated
experimentally@12# by Lu and Greenleaf. These waves may
contain extended frequency bandwidths and so are pulses
that on propagation remain nondiffracting in the transverse
direction. The nameX waves arises from the property that in
a meridian plane~longitudinally, e.g., at a fixed time! the
shape of the field intensity pattern resembles the letterX. The
relation of theX waves to the wavelet theory was recently
established via an interesting method that converts any solu-
tion of the scalar wave equation to a nondiffracting solution
but with the dimensionality increased by one@16,17#. Appli-
cations of theX waves in acoustical imaging and tissue char-
acterizations as well as in electromagnetic energy transmis-
sion have been proposed@6#.

In this paper we construct theX waves and their deriva-
tives by using the formulation in terms of an angular spec-
trum of plane waves. This approach provides deeper insight
into the physics of theX waves, and also enlightens the
relation of these waves to the general nondiffracting~mono-
chromatic! fields that are widely used in optics@18#. It is
shown that a single angular spectrum characterizes theX
waves of any order and, respectively, the various time de-
rivatives of theX waves of any order are characterized by a
unique angular spectrum, each. Illustrations of the angular
spectra, and of the space and time dependence of theX
waves within the angular-spectrum representation are given.
When the order of theX waves increases, the space-time
shape of the field is discovered to approach a uniform trian-
gular wedge.

II. THEORY OF NONDIFFRACTING X WAVES

We begin by summarizing the main results for theX
waves, following the presentation by Lu and Greenleaf@6#.
Consider the uniform, isotropic, 3D scalar wave equation

¹2F~r ,t !2
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for a fieldF(r ,t) (c is the speed of the wave!. Using direct
substitution, it was shown by Lu and Greenleaf@6# that
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is an exact solution of the wave equation in cylindrical co-
ordinatesr5(r cosw, r sinw, z). In Eq. ~3!, B(v/c) is any
~well-behaved! complex-valued function, typically a transfer
function of the physical system under scrutiny,H(v/c) is
the Heaviside step function, 0,z,p/2 is an angle~to be
defined later!, a0.0 is a constant, andJn is a Bessel func-
tion of the first kind and of thenth order. The solution ex-
pressed in Eqs.~2! and ~3! is called thenth-orderX wave,
FXn

.

If the function B(k) is a constant~and equalsa0), the
X-wave solution can be written in an analytic form through
Laplace transformation of the integrand. The amplitude of
the fundamental~zeroth-order! X wave in a meridional plane
at a fixed time (t50) is illustrated in Fig. 1.@Note that theX
waves in Fig. 1~and those in Fig. 6! are special cases of the
X waves represented by Eqs.~2! and ~3!—those for which
B(k)5a05const. These are so-called ‘‘broadband’’X
waves,FXBBn

.# The X-like amplitude profile is rotationally
symmetric with respect to the propagation axis. The wave is
nondiffracting~the lateral and axial field patterns are invari-
ant! in a coordinate system wherez2cpt5const, i.e., the
wave propagates in thez direction at a velocity
cp5c/cosz. It is seen that the waves are superluminal be-
cause the velocitycp exceeds the speed of sound or light in
the medium.

TheX-wave solution investigated above is of infinite ex-
tent and it has a divergent total energy, which are both char-
acteristic features of exact, nondiffracting, solutions. Practi-
cal X waves, which can be generated with the help of
physical devices, are nearly nondiffracting within a finite
depth of field. TheX waves produced by radiators of finite

apertures and with different transfer functionsB(k) have
been evaluated@6# using the Rayleigh-Sommerfeld diffrac-
tion theory.

Relation of nondiffracting waves to wavelets has also
been discussed by Luet al. @16#. They have shown that an
(n21)-dimensional wavelet solution may be transformed to
a nondiffractingn-dimensional solution which, forn53, is
proportional to the second time derivative of the fundamental
X wave.

III. CONSTRUCTION OF X WAVES IN THE ANGULAR-
SPECTRUM REPRESENTATION

The angular-spectrum decomposition is readily derived
from the scalar wave equation, and the representation is well
established for nondiffracting fields@9#. Here we first present
the main results of the general formulation and then specifi-
cally apply it to theX waves. Many physical properties of
the X waves, such as the superluminous feature of conic
waves, become obvious in the framework of the angular-
spectrum representation. In particular, the angular-spectrum
decomposition is exactly the construction within which an
(n21)-dimensional diffractive solution implies, through a
coordinate substitution, ann-dimensional nondiffracting so-
lution. These interesting connections will be expounded in
detail within a separate publication.

A. Angular spectrum of nondiffracting waves

The wave equation, Eq.~1!, for a field

F~r ,t !5
1

2pE2`

`

f~r ,v!exp~2 ivt !dv ~4!

is reduced to the homogeneous Helmholtz equation

¹2f~r ,v!1k2f~r ,v!50, ~5!

where the wave number is defined ask5v/c. The mono-
chromatic solutions of the Helmholtz equation may be ex-
pressed in terms of the angular-spectrum decomposition

f~r ,v!5E
2`

` E
2`

`

a~p,q,v!eik~px1qy1muzu!dpdq, ~6!

wherea(p,q,v) is the angular spectrum and the mutual re-
lationship obeyed between the triplep, q, andm is given by

m5HA12p22q2 for p21q2<1,

iAp21q221 for p21q2.1 .
~7!

These terms represent homogeneous plane waves and expo-
nentially decaying evanescent waves, respectively. The an-
gular spectruma(p,q,v) can be calculated from the value of
f(r ,v) at z50, i.e.,

a~p,q,v!5S k

2p D 2E
2`

` E
2`

`

f~x,y,z50,v!

3e2 ik~px1qy!dxdy. ~8!

FIG. 1. Amplitude of the zeroth-orderX wave,FX0
, in the me-

ridional xz plane. The wholeX-wave pattern is rotationally sym-
metric about z. Parameters are chosen as follows: timet50,
B(k)5a050.05 mm,c51.5 mm/ms, z54°, andr51 mm. The
angle 2z is extended between the branches of theX wave.
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The nondiffracting relation for monochromatic fields may
be defined as

ufnd~r ,v!u25ufnd~x,y,z,v!u25ufnd~x,y,z50,v!u2,
~9!

which implies that the lateral intensity distribution of a non-
diffracting field does not vary on propagation along thez
direction. A well-known solution satisfying this condition
can be derived provided that we consider source-free fields
for z>0 and change the rectangular coordinates in the
angular-spectrum representation@Eq. ~6!# to the spherical
ones.~In these coordinates,a may generally be complex;
however,a is real for free fields. Here we do not discuss the
consequences of this; see, for example Ref.@19#.! Then
s5(p,q,m)5(sina cosb, sina sinb, cosa) and the differen-
tials transform asdpdq5sina cosa da db. Thus the field
assumes the form

f~r ,v!5E
0

p/2E
0

2p

F~a,b,v!eiks–rsina cosa da db,

~10!

where we have denoted

F~a,b,v!5a~p,q,v!. ~11!

We consider angular spectra of the type

F~a,b,v!5A~b,v!
d~a2a0!

usina0ucosa0
, ~12!

whereA(b,v) is an arbitrary function,d is the Dirac delta
function, anda0,p/2. This corresponds to the field

fnd~r ,v!5eikz cosa0E
0

2p

A~b,v!

3exp@ ik sina0~x cosb1y sinb!#db,

~13!

which satisfies the nondiffracting condition. The field con-
sists of plane waves with their wave vectors on the surface of
a cone, in which the top angle is 2a0; see Fig. 2. The super-
luminal property of the conic waves is obvious in this repre-
sentation because the intersection of the wave fronts is seen
to propagate at the speedcp5c/cosa0.

If we further change thex and y coordinates into
the cylindrical coordinate representation through the relation
x cosb1y sinb5r cos(b2w), we get the following expres-
sion for the field

fnd~r ,v!5eikz cosa0E
0

2p

A~b,v!

3exp@ ikr sina0cos~b2w!#db. ~14!

This is a general nondiffracting solution, including the rota-
tionally symmetric and nonsymmetric fields with respect to
thez axis. This result has been investigated extensively~see,
e.g., Refs.@8,9#!.

Now suppose thatA(b,v) is sufficiently well-behaved,
such that it can be expanded in a Fourier series~with the
period 2p):

A~b,v!5 (
n52`

`

an~v!einb5 (
n52`

`

an~v!einwein~b2w!.

~15!

Inserting Eq.~15! into Eq. ~14! gives

fnd~r ,v!5eikz cosa0 (
n52`

`

an~v!exp~ inw!

3E
0

2p

exp@ in~b2w!#

3exp@ ikr sina0cos~b2w!#d~b2w!.

~16!

Moreover, using a known identity of Bessel functions, we
find

fnd~r ,v!5eikz cosa0 (
n52`

`

cn~w,v!Jn~kr sina0!, ~17!

where we have introduced

cn~w,v!52p expF inS w1
p

2 D Gan~v!. ~18!

The nondiffracting solution consists of a sum of Bessel func-
tions with varying ordern multiplied by the complex coef-
ficients cn(w,v), in which the phase only depends on the
azimuthal anglew. This implies a cylindrically symmetric
lateral intensity distribution for the individual terms, but not
for the total field. Note that each term in the sum represents
a nondiffracting field as well.

B. Construction of X waves

We establish the relation between the nondiffracting ex-
pression in Eq.~17! and the spectrum of theX waves in Eq.

FIG. 2. Wave vectorsk of a nondiffracting wave lie on a cone
with the top angle 2a0 in momentum space. The angular variable
b has values in the range@0,2p#. The plane waves propagate at the
speedc along the cone but their interference pattern has a superlu-
minous velocitycp5c/cosa0 in the z direction.
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~3!, and derive the angular spectrum for theX waves. If we
choosecn5(2p/c)einwB(k)H(k)e2ka0 in Eq. ~17!, we find

f~r ,v!5
2p

c
B~k!H~k!e2k~a02 izcosa0!

3 (
n52`

`

einwJn~kr sina0!. ~19!

Any term in the sum in Eq.~19!,

fn~r ,v!5
2p

c
einwB~k!H~k!Jn~kr sina0!e

2k~a02 iz cosa0!,

~20!

coincides with the spectrumfXn
(r ,v) of the X waves@Eq.

~3!# if we choosea05z. Note that these angles have exactly
the same value, although their original physical interpreta-
tions are quite different. The anglez is associated with the

half-angle between the orientation of theX branches in Fig.
1, while the anglea0 is half the top angle of the cone of
wave vectors in Fig. 2.

The angular spectrum of theX waves can now be found
by using thecn(w,v) introduced in Eqs.~18!, ~15!, ~12!, and
~11!:

Fn~a,b,v!5An~b,v!
d~a2z!

usinzucosz
, ~21!

where

An~b,v!5
1

c
B~k!H~k!e2ka0 expF inS b2

p

2 D G . ~22!

The expression in Eq.~21! is of the same type as the ordinary
nondiffracting solution in Eq.~12! with the wave vectors on
the surface of the cone:a5z.

In view of Eq. ~4!, the spectrum of themth-order deriva-
tive ~with respect to time! of theX wave is the fundamental
X-wave spectrum multiplied by (2 iv)m, and hence the de-
rivative is also a nondiffracting beam. Consequently, the an-
gular spectrum of theX waves and their derivatives may be
written in a unique, ‘‘universal,’’ form:

FIG. 3. Normalized amplitude of the coefficient for the angular
spectrumAn

(m)(b,v) in Eq. ~24! with m50 ~solid curve!, m51
~dashed curve! andm52 ~dashed-dotted curve!. The normalization
factor chosen is the square root of the integrated intensity of the
X-wave spectrum. The parameters employed areB(k)5a050.05
mm, c51.5 mm/ms, z54°, andr51 mm.

FIG. 4. Phase of the coefficient for the angular spectrum
An
(m)(b,v) in Eq. ~24! for m50 and n50 ~solid curve!, n51

~dashed curve!, andn52 ~dashed-dotted curve!.

FIG. 5. ~a! Normalized amplitude of theX-wave spectrum for
n50 andm50 ~solid curve!, m51 ~dashed curve!, andm52
~dashed-dotted curve!. ~b! Same as~a! but now forn51. The nor-
malization factor is the square root of the integrated intensity of the
X-wave spectrum. The parameters employed areB(k)5a050.05
mm, c51.5 mm/ms, z54°, andr51 mm.
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Fn
~m!~a,b,v!5An

~m!~b,v!
d~a2z!

usinzucosz
, ~23!

where

An
~m!~b,v!5kmcm21B~k!H~k!e2ka0

3expH i Fnb2~n1m!
p

2 G J . ~24!

In the angular-spectrum representation we may construct dif-
ferent types ofX waves@including theFXn

in Eq. ~2!# by

choosing the coefficientsAn
(m)(b,v) according to Eq.~24!.

IV. ILLUSTRATIONS

We find it quite instructive to visualize in detail the angu-
lar spectra, the time-domain spectra, and the higher-order
forms of theX waves, and to investigate the properties of the
X waves on the basis of the relations derived in the previous
section.

A. Angular spectra

Characteristically to any nondiffracting waves, the wave
vectors for theX waves lie on the surface of a cone, whose
top angle is 2z ~cf. Fig. 2!. In a situation where all the other
parameters are fixed, the magnitudes of the wave vectors
have a minimum for the anglez5p/4 and increase sinusoi-
dally for decreasing and increasing angles, cf. Eq.~21!.

Note, in particular, that the amplitude of the angular spec-
trum Fn

(m)(a,b,v) is independent of the ordern ~for fixed
m). Especially, the amplitude is universal for all solutions

FXn
. Instead, the amplitude changes with the orderm of the

derivative~for fixed n). The amplitude curves are shown in
Fig. 3 as functions ofk.

The phase of the angular spectrumFn
(m)(a,b,v) is inde-

pendent ofk but the linear phase change with respect to the
azimuthal angleb depends on the ordern of the wave. The
phase curves are illustrated in Fig. 4 for the casem50.

B. Time-domain spectra

The functional form of the amplitude of theX-wave spec-
tra is determined as the amplitude of the angular spectrum
multiplied by the appropriatenth-order Bessel function@see
Eqs. ~20! and ~24!#. The amplitudes of the spectra for the
zeroth-orderX wave and its first and second derivatives as
well as for the first-orderX wave and its first two derivatives
are shown in Fig. 5.

The spectra in Fig. 5~a! resemble~although the param-
eters chosen are different! the spectra plotted in Ref.@6# at
low frequencies. To supplement the results of Lu and Green-
leaf @16#, we have in addition shown that the sidelobes are
present in the spectra at higher frequencies.

C. Dark-beam X waves

In addition to the fundamental nondiffracting wave corre-
sponding to the zeroth-order Bessel function, there is also a
great interest in the higher-order waves in several branches
of physics@9#. In particular, the first-order wave is of main
interest because the intensity vanishes at the center of the
beam. This so-called ‘‘dark beam’’ with a small and well-
defined dark central spot has applications, for example, in
precision alignment.

FIG. 6. Amplitude of theX waves,FXn
, for highern-values~cf. Fig. 1 for the fundamentaln50 X-wave mode!, in a meridianxz plane

at time t50: ~a! n51, ~b! n52, ~c! n56, and~d! n515. Parameters used:B(k)5a050.05 mm,c51.5 mm/ms, z54°, andr51 mm.
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Lu and Greenleaf consider mainly the fundamentalX
wave@see Fig. 1# in their publications. Here we are interested
to illustrate and analyze the special properties of higher-order
X waves within the angular-spectrum representation. The
amplitude distributions for theX waves of the orders 1, 2, 6,
and 15 are plotted in Fig. 6.

These waves have a~nearly! dark central spot which is
characteristic to all of the higher-order Bessel beams. The
intensity spreads gradually away from thez axis as the order
n of the wave increases. The branches of letterX are clearly
visible whenn is 1 or 2, but the intensity distribution finally
seems to approach a triangular wedge shape, where the in-
tensity becomes evenly distributed between the propagation
fronts of theX. In every case, however, the intensity is con-
centrated within the area defined by theX branches.

V. DISCUSSION AND CONCLUSIONS

We have shown that the angular-spectrum representation
of plane waves provides a unified treatment for the nondif-
fractingX waves, first discovered by Lu and Greenleaf, and
also for the temporal derivatives of theX waves, which like-
wise are nondiffracting solutions of the same wave equation.
For n.0, these are so-called ‘‘dark beams.’’

Recently, theX waves have attracted wide interest both in
acoustics and optics; for example, theX waves are being
applied within novel methods of designing femtosecond light

fields,X pulses, in such a way that they would maintain their
extended longitudinal and lateral localizations during propa-
gation into considerable depths in a given dispersive medium
@20#.

In particular, we have shown that a single, ‘‘universal’’
angular-spectrum representation serves to produce both the
fundamentalX wave and the higher-order derivativeX
waves as well. We have examined the distribution of the
X-wave amplitude in the meridian plane and we have further
shown that for increasing order theX waves tend to approach
a triangular wedge shape.

Our present approach facilitates the treatment ofX waves
on the same general mathematical footing as that for nondif-
fracting waves in other branches of physics, such as electro-
dynamics and optics. We consider these connections useful
for further theoretical and experimental investigations of the
X waves.
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