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Angular-spectrum representation of nondiffracting X waves
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We derive the nondiffractingk waves, first discussed within acoustics by Lu and Greenl&HE Trans.
Ultrason. Ferroelec. Freq. Con®9, 19(1992], using the general mathematical formalism based on an angular
spectrum of plane waves. This serves to provide a unified treatment of not only the fundamental zeroth-order
X waves of Lu and Greenleaf, but also of the lesser-known higher-order derivativaves, first discussed
here in terms of a single, universal, angular spectrum. The characteristic ctettmeX-like) shape and the
special properties of th&X waves, as well as of their angular-spectrum representation, are discussed and
illustrated in detail. Asymptotically, for increasing order, the appearance of thiaves is found to transform
into a triangular wedgelike waveforriS1063-651X96)04910-0

PACS numbg(s): 43.20+g, 62.30+d, 03.40.Kf, 02.90+p,

I. INTRODUCTION recently put forward theoreticallj6,16] and demonstrated
experimentally{12] by Lu and Greenleaf. These waves may
The angular spectrum of plane wav@sSPW) is an in-  contain extended frequency bandwidths and so are pulses
tuitive and physically appealing method to study wavethat on propagation remain nondiffracting in the transverse
propagation and diffraction in problems of electrodynamics direction. The nam& waves arises from the property that in
optics, and acousticl]. Two types of plane-wave expan- & meridian planglongitudinally, e.g., at a fixed timethe
sions are commonly in use: on one hand the Whittaker-typghape of the field intensity pattern resembles the lettathe
(1902 representations of source-free fields in terms of horelation of theX waves to the wavelet theory was recently
mogeneous plane waves propagating in all directions and, (ﬁ}}Stab"ShEd via an interesting method that converts any solu-
the other hand, the general angular-spectrum representatiofi@n of the scalar wave equation to a nondiffracting solution
effectively based on the Weyl expansitt919 of a spheri-  but with the dimensionality increased by ofrie5,17. Appli-
cal wave[2]. The latter decomposition contains not only ho- cations of thex waves in acoustical imaging and tissue char-
mogeneous but also inhomogeneo(svanescent plane  acterizations as well as in electromagnetic energy transmis-
waves, and so it is applicable in aperture and near-fiel@ion have been propos¢fl].
analyses as well. In this paper we construct th¢ waves and their deriva-
Several classes of localizéth space and timeand non- tives by using the formulation in terms of an angular spec-
diffracting three-dimensiona(3D) wave solutions to the trum of plane waves. This approach provides deeper insight
wave equations in free space or in uniform and isotropidnto the physics of theX waves, and also enlightens the
media have been discoverig+6]. The localized wave fields relation of these waves to the general nondiffractimpno-
correspond to linear, nondispersive, wave-packet solutionghromatig fields that are widely used in optidd8]. It is
while nondiffractive waves are monochromatic beams thashown that a single angular spectrum characterizesXthe
do not spread on propagation. The ideal properties of thes&aves of any order and, respectively, the various time de-
fields require infinite domains and energies, but approximatévatives of theX waves of any order are characterized by a
solutions showing extended ranges of localization have beenique angular spectrum, each. lllustrations of the angular
produced in finite aperturef7]. Coherent nondiffracting Spectra, and of the space and time dependence oiXthe
fields and their practical realizations have been studied exwaves within the angular-spectrum representation are given.
tensively in optics{8—11] and in acoustic$6,12]. Besides When the order of theX waves increases, the space-time
high-definition metrology, these fields have potential appli-shape of the field is discovered to approach a uniform trian-
cations, e.g., in nonlinear opti¢$3], particle-beam confine- gular wedge.
ment[14], and inverse free-electron laser accelerafhEs.
A particular subset of exact r_10ndiffracting solutions to the Il. THEORY OF NONDIFERACTING X WAVES
free-space scalar wave equation, called ¥havaves, was
We begin by summarizing the main results for tKe
waves, following the presentation by Lu and Greenlggf
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apertures and with different transfer functioB¢k) have
been evaluatefi6] using the Rayleigh-Sommerfeld diffrac-
tion theory.

Relation of nondiffracting waves to wavelets has also
been discussed by Let al. [16]. They have shown that an
(n—1)-dimensional wavelet solution may be transformed to
a nondiffractingn-dimensional solution which, fon=3, is
proportional to the second time derivative of the fundamental
X wave.

Ill. CONSTRUCTION OF X WAVES IN THE ANGULAR-
SPECTRUM REPRESENTATION

FIG. 1. Amplitude of the zeroth-ordet Wave,CIJXO, in the me-
ridional xz plane. The wholeX-wave pattern is rotationally sym-
metric aboutz. Parameters are chosen as follows: titeO,
B(k)=a,=0.05 mm,c=1.5 mmjus, {=4°, andp=1 mm. The
angle Z is extended between the branches of Xheave.

The angular-spectrum decomposition is readily derived
from the scalar wave equation, and the representation is well
established for nondiffracting field9]. Here we first present
the main results of the general formulation and then specifi-
cally apply it to theX waves. Many physical properties of
1 (= the X waves, such as the superluminous feature of conic
Dy (r't):_f by (r,o)e “dw, n=0,12..., waves, become obvious in the framework of the angular-

" 21 ) o0 spectrum representation. In particular, the angular-spectrum

(20 decomposition is exactly the construction within which an
(n—1)-dimensional diffractive solution implies, through a

where coordinate substitution, an-dimensional nondiffracting so-
lution. These interesting connections will be expounded in
by (1 w)_z_wemB(ﬂ)H(ﬁ 3 gpsing detail within a separate publication.
T e c/ \c/™Mc
X @ (@/c)(ag—iz cog) 3) A. Angular spectrum of nondiffracting waves

The wave equation, Ed1), for a field
is an exact solution of the wave equation in cylindrical co- 1
ordinatesr =(p cosp, psing, 2). In Eq. (3), B(w/c) is an I .
(welI—behavégcorr?glei—va(fueci functiczm, typi<(:ally)a trané,fer o= 2WJl@¢(r,w)exp( lot)dw @
function of the physical system under scrutiny(w/c) is
the Heaviside step function,<0/<7/2 is an angle(to be s reduced to the homogeneous Helmholtz equation
defined later, a;>0 is a constant, and, is a Bessel func-

tion of the first kind and of theath order. The solution ex- V2¢(r,m)+k?¢(r,w)=0, (5
pressed in Eq92) and (3) is called thenth-order X wave,
q’xn- where the wave number is defined las w/c. The mono-

If the function B(k) is a constaniand equalsay), the  chromatic solutions of the Helmholtz equation may be ex-
X-wave solution can be written in an analytic form throughpressed in terms of the angular-spectrum decomposition
Laplace transformation of the integrand. The amplitude of
the fundamentalzeroth-order X wave in a meridional plane ® (= :
at a fixed time {=0) is illustrated in Fig. 1[Note that theX o(r,w)= f_wf_oca(p’q'“’)elk(pﬁqymlzl)dpdq’ 6
waves in Fig. 1(and those in Fig. Bare special cases of the
X waves represented by Eq®) and (3)—those for which
B(k)=ap=const. These are so-called “broadbandX
Waves,QDXBBn.] The X-like amplitude profile is rotationally

symmetric with respect to the propagation axis. The wave is 1—p?—q? forp?+o?<1,
nondiffracting(the lateral and axial field patterns are invari- m= 2 2 7)
iJpZ+g?—1 forp?+qg>>1.

anp in a coordinate system whe®-c,t=const, i.e., the
wave propagates in thez direction at a velocity

cp,=c/cog. It is seen that the waves are superluminal be-These terms represent homogeneous plane waves and expo-
cause the velocitg, exceeds the speed of sound or light in nentially decaying evanescent waves, respectively. The an-
the medium. gular spectruna(p,q,w) can be calculated from the value of

cal X waves, which can be generated with the help of a(p.q,0)=

The X-wave solution investigated above is of infinite ex- ¢(r,») atz=0, i.e.,
k \2 (e [
%) f, J, d(X,¥,2=0,0)
physical devices, are nearly nondiffracting within a finite

tent and it has a divergent total energy, which are both char-
depth of field. TheX waves produced by radiators of finite x e~ k(PxTay)gxdy. (8)

wherea(p,q, ) is the angular spectrum and the mutual re-
lationship obeyed between the trigte g, andm is given by

acteristic features of exact, nondiffracting, solutions. Practi-




54

ANGULAR-SPECTRUM RE

The nondiffracting relation for monochromatic fields may
be defined as

2
3

|d’nd(riw)|2: | ¢nd(x,y,z,w)|2= | bnd(X,Y,2=0,0) ©

which implies that the lateral intensity distribution of a non-
diffracting field does not vary on propagation along the
direction. A well-known solution satisfying this condition

can be derived provided that we consider source-free fields
for z=0 and change the rectangular coordinates in the

angular-spectrum representatipBq. (6)] to the spherical
ones.(In these coordinatesy may generally be complex;

however,« is real for free fields. Here we do not discuss the

consequences of this; see, for example R&B].) Then
s=(p,q,m)=(sina cosB, sina sinB, cosx) and the differen-
tials transform aglpdg=sina cose da dB. Thus the field
assumes the form

w2 (27 . )
¢(r,w)=fo fo F(a,B,0)e* sine cosx da d,

(10
where we have denoted
Fa,B,0)=a(p,q, ). (11)
We consider angular spectra of the type
o(a—ap)
Fla,B,0)=A(B, 12

@) |sina|coseg’

whereA(B,w) is an arbitrary functiong is the Dirac delta
function, anday<#/2. This corresponds to the field

i 2
o1, ) = ik o510 JO A(B.o)

Xexgik sinag(x cosB+y sinB)]dg,
(13

which satisfies the nondiffracting condition. The field con-

sists of plane waves with their wave vectors on the surface of

a cone, in which the top angle isxg; see Fig. 2. The super-

luminal property of the conic waves is obvious in this repre-
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FIG. 2. Wave vector& of a nondiffracting wave lie on a cone
with the top angle &, in momentum space. The angular variable
B has values in the rand®,27]. The plane waves propagate at the
speedc along the cone but their interference pattern has a superlu-
minous velocityc,=c/cosy, in the z direction.

Now suppose thaA(B,w) is sufficiently well-behaved,
such that it can be expanded in a Fourier seiggh the
period 2rr):

s} oo

A(B,w)= 2_ a(w)e"f= 2_ ay(w)eneenF=e),
(15
Inserting Eq.(15) into Eq. (14) gives
bod 1 0) =€ %0 3 a(w)exping)
2w
x | Texin(g- e
0
Xexdikp sinagcogB—¢)]d(B— o).
(16)

Moreover, using a known identity of Bessel functions, we
find

BT, 0) =€ %0 3 ¢y(¢,0)In(kp Sinao), (17)

where we have introduced

sentation because the intersection of the wave fronts is seen

to propagate at the speeg= c/cosay.
If we further change thex and y coordinates into

the cylindrical coordinate representation through the relation

X c0sB+Yy sinB=p cos(B—¢), we get the following expres-
sion for the field

. 2m
tndr.0) =250 [ a0
0
Xexdikp sinagcogB—¢)]dB. (14

This is a general nondiffracting solution, including the rota-

tionally symmetric and nonsymmetric fields with respect to

the z axis. This result has been investigated extensivebe,
e.g., Refs[8,9]).

+’7T
LN

Chlep,w)=2m ex;{in a,(w). (18

The nondiffracting solution consists of a sum of Bessel func-
tions with varying ordem multiplied by the complex coef-
ficients c,(¢,w), in which the phase only depends on the
azimuthal anglep. This implies a cylindrically symmetric
lateral intensity distribution for the individual terms, but not
for the total field. Note that each term in the sum represents
a nondiffracting field as well.

B. Construction of X waves

We establish the relation between the nondiffracting ex-
pression in Eq(17) and the spectrum of th¥ waves in Eq.
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half-angle between the orientation of thebranches in Fig.
1, while the angler, is half the top angle of the cone of
wave vectors in Fig. 2.

The angular spectrum of thé waves can now be found
by using thec,(¢,w) introduced in Eqs(18), (15), (12), and
(11):

d(a—1{)

P singloogw #Y

Fn(a,B,0)=Ax(
where
1 ) T
AL(B,w)= EB(k)H(k)e‘kaO exp{m(ﬁ— E” (22

The expression in Eq21) is of the same type as the ordinary

FIG. 3. Normalized amplitude of the coefficient for the angular nondiffracting solution in Eq(12) with the wave vectors on
spectrumA{™(B,w) in Eq. (24) with m=0 (solid curvé, m=1

(dashed cunjeandm= 2 (dashed-dotted curyeThe normalization

the surface of the conex={.
In view of Eq. (4), the spectrum of thenth-order deriva-

factor chosen is the square root of the integrated intensity of thejye (with respect to timpof the X wave is the fundamental

X-wave spectrum. The parameters employed Bfk) =a,=0.05

mm, c=1.5 mmjus, {=4°, andp=1 mm.

(3), and derive the angular spectrum for tkevaves. If we

choosec, = (27/c)e"*B(k)H(k)e % in Eq. (17), we find

2m _
d(r,w)= ?B(k)H(k)e*k(agflzcomo)

]

X > e (kp sinay).
n=—x

Any term in the sum in Eq(19),

19

2m in H —k(ag—iz cosag)
dp(r,w)= ?e ?B(k)H(k)J,(kp sinag)e™ o o,

coincides with the spectrum&xn(r,w) of the X waves|[Eq.
(3)] if we choosea=¢. Note that these angles have exactly ()

(20

X-wave spectrum multiplied by<iw)™, and hence the de-
rivative is also a nondiffracting beam. Consequently, the an-
gular spectrum of th& waves and their derivatives may be
written in a unique, “universal,” form:
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FIG. 5. (a) Normalized amplitude of th-wave spectrum for
n=0 and m=0 (solid curvg, m=1 (dashed curyg and m=2
(dashed-dotted curye(b) Same aga) but now forn=1. The nor-

spectrummalization factor is the square root of the integrated intensity of the

X-wave spectrum. The parameters employed B{k) =a,=0.05
mm, c=1.5 mmjs, {=4°, andp=1 mm.
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FIG. 6. Amplitude of theX waves,®y , for highern-values(cf. Fig. 1 for the fundamental=0 X-wave modg, in a meridianxz plane
at timet=0: (a) n=1, (b) n=2, (c) n=6, and(d) n=15. Parameters useB{k)=ay=0.05 mm,c=1.5 mmjs, {=4°, andp=1 mm.

m) m Sa—1{) ®y . Instead, the amplitude changes with the onaleof the
FiV(a,B,0)=A"(B,0) e, (23 . : . .
|sin|cosl derivative (for fixed n). The amplitude curves are shown in
Fig. 3 as functions ok.

The phase of the angular spectri#fi”(a, 8, ) is inde-
pendent ofk but the linear phase change with respect to the
azimuthal angle3 depends on the order of the wave. The
phase curves are illustrated in Fig. 4 for the case0.

where

A (B, @) =KMc™ 1B(K)H (k)e ™ e

X exp[ i
B. Time-domain spectra

In the angular-spectrum representation we may construct dif- The functional form of the amplitude of théwave spec-
ferent types ofX waves[including thedy in Eq. (2)] by {3 is determined as the amplitude of the angular spectrum
choosing the coefficienta{™ (8, w) according to Eq(24). multiplied by the appropriatath-order Bessel functiofsee
Egs. (20) and (24)]. The amplitudes of the spectra for the
IV. ILLUSTRATIONS zeroth-orderX wave and its first and second derivatives as

o ) _ o ) well as for the first-ordeK wave and its first two derivatives
We find it quite instructive to visualize in detail the angu- gre shown in Fig. 5.

lar spectra, the time-domain spectra, and the higher-order Tpe spectra in Fig. ) resemble(although the param-

X waves on the basis of the relations derived in the previougy frequencies. To supplement the results of Lu and Green-

r
nﬁ—(n+m)§H. (29

section. leaf [16], we have in addition shown that the sidelobes are
present in the spectra at higher frequencies.
A. Angular spectra
Characteristically to any nondiffracting waves, the wave C. Dark-beam X waves

vectors for theX waves lie on the surface of a cone, whose |n addition to the fundamental nondiffracting wave corre-
top angle is Z (cf. Fig. 2). In a situation where all the other sponding to the zeroth-order Bessel function, there is also a
parameters are fixed, the magnitudes of the wave vectoigreat interest in the higher-order waves in several branches
have a minimum for the anglg=7/4 and increase sinusoi- of physics[9]. In particular, the first-order wave is of main
dally for decreasing and increasing angles, cf. €9). interest because the intensity vanishes at the center of the

Note, in particular, that the amplitude of the angular specheam. This so-called “dark beam” with a small and well-
trum F("(«,B,w) is independent of the order (for fixed  defined dark central spot has applications, for example, in
m). Especially, the amplitude is universal for all solutions precision alignment.
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Lu and Greenleaf consider mainly the fundamenXal fields,X pulses, in such a way that they would maintain their
wave[see Fig. 1in their publications. Here we are interested extended longitudinal and lateral localizations during propa-
to illustrate and analyze the special properties of higher-ordegation into considerable depths in a given dispersive medium
X waves within the angular-spectrum representation. Thé20].
amplitude distributions for th& waves of the orders 1, 2, 6, In particular, we have shown that a single, “universal”
and 15 are plotted in Fig. 6. angular-spectrum representation serves to produce both the

These waves have @early dark central spot which is fundamentalX wave and the higher-order derivativé
characteristic to all of the higher-order Bessel beams. Thavaves as well. We have examined the distribution of the
intensity spreads gradually away from thaxis as the order X-wave amplitude in the meridian plane and we have further
n of the wave increases. The branches of ledarre clearly  shown that for increasing order tifewaves tend to approach
visible whenn is 1 or 2, but the intensity distribution finally a triangular wedge shape.
seems to approach a triangular wedge shape, where the in- Our present approach facilitates the treatmernX e¥aves
tensity becomes evenly distributed between the propagatioon the same general mathematical footing as that for nondif-
fronts of theX. In every case, however, the intensity is con-fracting waves in other branches of physics, such as electro-

centrated within the area defined by thebranches. dynamics and optics. We consider these connections useful
for further theoretical and experimental investigations of the
V. DISCUSSION AND CONCLUSIONS X waves.

We have shown that the angular-spectrum representation
of plane waves provides a unified treatment for the nondif-
fracting X waves, first discovered by Lu and Greenleaf, and We thank Dr. J. Lu and Dr. J. F. Greenleaf for useful
also for the temporal derivatives of thewaves, which like-  discussions during the 1995 IEEE Ultrasonics Symposium in
wise are nondiffracting solutions of the same wave equationSeattle. This research is supported by Micronas, Inc., of Bev-
Forn>0, these are so-called “dark beams.” aix, Switzerland and of Espoo, Finland, the NOKIA Group,

Recently, theX waves have attracted wide interest both inFinland, and TEKES, Technology Development Center, Fin-
acoustics and optics; for example, tkewaves are being land. One of ugA.T.F.) thanks the Academy of Finland for
applied within novel methods of designing femtosecond lightsupport.
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